Transformation of hydrogen titanate nanoribbons to TiO2 nanoribbons and the influence of the transformation strategies on the photocatalytic performance

نویسندگان

  • Melita Rutar
  • Nejc Rozman
  • Matej Pregelj
  • Carla Bittencourt
  • Romana Cerc Korošec
  • Andrijana Sever Škapin
  • Aleš Mrzel
  • Srečo D Škapin
  • Polona Umek
چکیده

The influence of the reaction conditions during the transformation of hydrogen titanate nanoribbons to TiO2 nanoribbons on the phase composition, the morphology, the appearance of the nanoribbon surfaces and their optical properties was investigated. The transformations were performed (i) through a heat treatment in oxidative and reductive atmospheres in the temperature range of 400-650 °C, (ii) through a hydrothermal treatment in neutral and basic environments at 160 °C, and (iii) through a microwave-assisted hydrothermal treatment in a neutral environment at 200 °C. Scanning electron microscopy investigations showed that the hydrothermal processing significantly affected the nanoribbon surfaces, which became rougher, while the transformations based on calcination in either oxidative or reductive atmospheres had no effect on the morphology or on the surface appearance of the nanoribbons. The transformations performed in the reductive atmosphere, an NH3(g)/Ar(g) flow, and in the ammonia solution led to nitrogen doping. The nitrogen content increased with an increasing calcination temperature, as was determined by X-ray photoelectron spectroscopy. According to electron paramagnetic resonance measurements the calcination in the reductive atmosphere also resulted in a partial reduction of Ti(4+) to Ti(3+). The photocatalytic performance of the derived TiO2 NRs was estimated on the basis of the photocatalytic oxidation of isopropanol. After calcinating in air, the photocatalytic performance of the investigated TiO2 NRs increased with an increased content of anatase. In contrast, the photocatalytic performance of the N-doped TiO2 NRs showed no dependence on the calcination temperature. An additional comparison showed that the N-doping significantly suppressed the photocatalytic performance of the TiO2 NRs, i.e., by 3 to almost 10 times, in comparison with the TiO2 NRs derived by calcination in air. On the other hand, the photocatalytic performance of the hydrothermally derived TiO2 NRs was additionally improved by a subsequent heat treatment in air.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field

Abstract: In this study, using density functional theory and the SIESTA computationalcode, we investigate the electronic and optical properties of the armchair graphenenanoribbons and the armchair boron nitride nanoribbons of width 25 in the presence of atransverse external electric field. We have observed that in the absence of the electricfield, these structures are se...

متن کامل

Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study

The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Hydrogen-Etched TiO2−x as Efficient Support of Gold Catalysts for Water–Gas Shift Reaction

Hydrogen-etching technology was used to prepare TiO2−x nanoribbons with abundant stable surface oxygen vacancies. Compared with traditional Au-TiO2, gold supported on hydrogen-etched TiO2−x nanoribbons had been proven to be efficient and stable water–gas shift (WGS) catalysts. The disorder layer and abundant stable surface oxygen vacancies of hydrogen-etched TiO2−x nanoribbons lead to higher mi...

متن کامل

Effect of Formation of Ag2Ti4O9 Phase on Photocatalytic Activity of Ag-TiO2 Nanocomposite

Ag-TiO2 nanocomposite with the optimum concentration of 1wt% was produced by a sol-gel process using Rhodamine B for the catalytic activity. The initial samples were prepared by heat treatment at various temperatures (266, 338, 390, 485, 600 and 700°C) with a holding time of 2 h. DTA and XRD of these samples led to choosing the temperature of 530°C as the heat treatment temperature. Then some s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015